Infinite Horizon Autonomous Systems with Unbounded Cost
نویسندگان
چکیده
We discuss control systems defined on an infinite horizon, where typically all the associated costs become unbounded as the time grows indefinitely. It is proved, under certain lower semicontinuity and controllability assumptions, that a linear time function can be subtracted from the cost, resulting in a modified cost, which is bounded on the infinite time interval. The cost evaluated over one sampling interval has a simple representation in terms of the initial and final states. Applying this representation we obtain an optimality result for control systems represented by ordinary differential equations whose cost integrand contains a discounting factor.
منابع مشابه
Convergence of trajectories in infinite horizon optimization
In this paper, we investigate the convergence of a sequence of minimizing trajectories in infinite horizon optimization problems. The convergence is considered in the sense of ideals and their particular case called the statistical convergence. The optimality is defined as a total cost over the infinite horizon.
متن کاملOptimal Finite-time Control of Positive Linear Discrete-time Systems
This paper considers solving optimization problem for linear discrete time systems such that closed-loop discrete-time system is positive (i.e., all of its state variables have non-negative values) and also finite-time stable. For this purpose, by considering a quadratic cost function, an optimal controller is designed such that in addition to minimizing the cost function, the positivity proper...
متن کاملOptimal Infinite-Horizon Feedback Laws for a General Class of Constrained Discrete-Time Systems: Stability and Moving-Horizon Approximations
Stability results are given for a class of feedback systems arising from the regulation of time-varying discrete-time systems using optimal infinite-horizon and moving-horizon feedback laws. The class is characterized by joint constraints on the state and the control, a general nonlinear cost function and nonlinear equations of motion possessing two special properties. It is shown that weak con...
متن کاملOn the Existence of a Classical Optimal Solution and of an Almost Strongly Optimal Solution for an Infinite-Horizon Control Problem
We consider an infinite-horizon optimal control problem with the cost functional described either by an integral over an unbounded interval (a Lebesgue integral) or by a limit of integrals (an improper Lebesgue integral). We prove some theorems on the existence of solutions to such problems. The proofs are based on appropriate lower closure theorems and some extensions of Olech’s theorem on the...
متن کاملSolving infinite horizon optimal control problems of nonlinear interconnected large-scale dynamic systems via a Haar wavelet collocation scheme
We consider an approximation scheme using Haar wavelets for solving a class of infinite horizon optimal control problems (OCP's) of nonlinear interconnected large-scale dynamic systems. A computational method based on Haar wavelets in the time-domain is proposed for solving the optimal control problem. Haar wavelets integral operational matrix and direct collocation method are utilized to find ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005